自定义资源解释器
资源解释器框架
在将资源从 karmada-apiserver
分发到成员集群的过程中,Karmada 可能需要了解资源的定义结构。以 Propagating Deployment
为例,在构建 ResourceBinding
的阶段,karmada-controller-manager
组件需要解析 deployment 资源的 replicas
字段。
对于 Kubernetes 原生资源来说,Karmada 知道如何解析它们,但是对于由 CRD 定义的资源(或是由聚合层方式注册)来说,由于缺乏对该资源结构信息的了解,它们将仅被当作普通资源来对待,因此,高级调度算法将不能应用于这些资源。
Resource Interpreter Framework 专为解释资源结构而设计,它包括两类解释器:
内置
解释器:用于解释常见的 Kubernetes 原生资源或一些知名的扩展资源;自定义
解释器: 用于解释自定义资源或覆盖内置
解释器。
注意:上述两类解释器之间的主要区别在于,
内置
解释器由 Karmada 社区实现并维护,并将其内置到 Karmada 组件中,例如karmada-controller-manager
。 相反,自定义
解释器是由用户实现和维护的,它应该作为Interpreter Webhook
或声明式配置
注册到 Karmada(更多详细信息,请参考 Customized Interpreter)。
解释器操作
在解释资源时,我们经常会提取多条信息。Karmada 中定义了多种解释器操作
,资源解释器框架
为每个操作类型提供服务。
关于资源解释器框架
定义的各种操作类型的具体含义,可以参考 Interpreter Operations 。
注意: 并非所有设计的操作类型均受支持(有关支持的操作,请参见下文):
注意:在使用特定的
解释器操作
解释资源时,最多只会咨询一个解释器;对于同一个资源,自定义
解释器比内置
解释器具有更高的优先级。 例如,内置
解释器为apps/v1
version 的Deployment
提供InterpretReplica
服务,如果有一个自定义解释器注册到 Karmada 来解释该资源,则自定义
解释器获胜,内置
解释器将被忽略。
内置解释器
对于常见的 Kubernetes 原生资源或一些知名的扩展资源来说,解释器操作
是内置的,这意味着用户通常不需要实现自定义解释器。 如果你希望内置更多资源,请随时提交问题 让我们了解您的用户案例。
内置解释器现在支持以下解释器操作
:
InterpretReplica
支持资源:
- Deployment(apps/v1)
- StatefulSet(apps/v1)
- Job(batch/v1)
ReviseReplica
支持资源:
- Deployment(apps/v1)
- StatefulSet(apps/v1)
- Job(batch/v1)
Retain
支持资源:
- Pod(v1)
- Service(v1)
- ServiceAccount(v1)
- PersistentVolumeClaim(v1)
- PersistentVolume(V1)
- Job(batch/v1)
AggregateStatus
支持资源:
- Deployment(apps/v1)
- Service(v1)
- Ingress(networking.k8s.io/v1)
- CronJob(batch/v1)
- Job(batch/v1)
- DaemonSet(apps/v1)
- StatefulSet(apps/v1)
- Pod(v1)
- PersistentVolume(V1)
- PersistentVolumeClaim(v1)
- PodDisruptionBudget(policy/v1)
InterpretStatus
支持资源:
- Deployment(apps/v1)
- Service(v1)
- Ingress(networking.k8s.io/v1)
- Job(batch/v1)
- DaemonSet(apps/v1)
- StatefulSet(apps/v1)
- PodDisruptionBudget(policy/v1)
InterpretDependency
支持资源:
- Deployment(apps/v1)
- Job(batch/v1)
- CronJob(batch/v1)
- Pod(v1)
- DaemonSet(apps/v1)
- StatefulSet(apps/v1)
InterpretHealth
支持资源:
- Deployment(apps/v1)
- StatefulSet(apps/v1)
- ReplicaSet(apps/v1)
- DaemonSet(apps/v1)
- Service(v1)
- Ingress(networking.k8s.io/v1)
- PersistentVolumeClaim(v1)
- PodDisruptionBudget(policy/v1)
自定义解释器
自定义解释器由用户实现和维护,它可以通过两种方式扩展,通过定义声明式配置文件或在运行时作为 webhook 运行。
注意:声明式配置比 webhook 有更高的优先级,即用户如果同时注册了这两种解释方式,将优先应用相应资源的声明式配置
声明式配置
什么是解释器声明式配置?
用户可以通过 ResourceInterpreterCustomization API 规范中声明的规则,快速为 Kubernetes 原生资源和 CR 资源自定义资源解释器。
配置编写
你可以通过创建或更新 ResourceInterpreterCustomization 资源来配置资源解释规则,当前支持在 ResourceInterpreterCustomization 中定义 lua 脚本。 你可以在 API 定义中学习如何定义 lua 脚本,以 retention 为例。
下面我们提供一个ResourceInterpreterCustomization资源的yaml编写示例:
resource-interpreter-customization.yaml
apiVersion: config.karmada.io/v1alpha1
kind: ResourceInterpreterCustomization
metadata:
name: declarative-configuration-example
spec:
target:
apiVersion: apps/v1
kind: Deployment
customizations:
replicaResource:
luaScript: >
local kube = require("kube")
function GetReplicas(obj)
replica = obj.spec.replicas
requirement = kube.accuratePodRequirements(obj.spec.template)
return replica, requirement
end
replicaRevision:
luaScript: >
function ReviseReplica(obj, desiredReplica)
obj.spec.replicas = desiredReplica
return obj
end
retention:
luaScript: >
function Retain(desiredObj, observedObj)
desiredObj.spec.paused = observedObj.spec.paused
return desiredObj
end
statusAggregation:
luaScript: >
function AggregateStatus(desiredObj, statusItems)
if statusItems == nil then
return desiredObj
end
if desiredObj.status == nil then
desiredObj.status = {}
end
replicas = 0
for i = 1, #statusItems do
if statusItems[i].status ~= nil and statusItems[i].status.replicas ~= nil then
replicas = replicas + statusItems[i].status.replicas
end
end
desiredObj.status.replicas = replicas
return desiredObj
end
statusReflection:
luaScript: >
function ReflectStatus (observedObj)
return observedObj.status
end
healthInterpretation:
luaScript: >
function InterpretHealth(observedObj)
return observedObj.status.readyReplicas == observedObj.spec.replicas
end
dependencyInterpretation:
luaScript: >
function GetDependencies(desiredObj)
dependentSas = {}
refs = {}
if desiredObj.spec.template.spec.serviceAccountName ~= nil and desiredObj.spec.template.spec.serviceAccountName ~= 'default' then
dependentSas[desiredObj.spec.template.spec.serviceAccountName] = true
end
local idx = 1
for key, value in pairs(dependentSas) do
dependObj = {}
dependObj.apiVersion = 'v1'
dependObj.kind = 'ServiceAccount'
dependObj.name = key
dependObj.namespace = desiredObj.metadata.namespace
refs[idx] = dependObj
idx = idx + 1
end
return refs
end
配置验证
你可以使用 karmadactl interpret
命令在将 ResourceInterpreterCustomization
配置应用到系统之前来验证该配置的正确性。我们提供了一些示例来帮助用户更好的理解如何使用该验证工具,请参考 examples 。
Webhook
什么是解释器 webhook?
解释器 webhook 是一种 HTTP 回调,它接收解释请求并对其进行处理。
编写一个解释器 webhook 服务器
请参考 Example of Customize Interpreter 的实现,我们在 Karmada E2E 测试中使用该方式进行了验证。webhook 将处理 Karmada 组件(例如 karmada-controller-manager)发送的 ResourceInterpreterRequest 请求,处理完成后将处理结果以 ResourceInterpreterResponse 为形式返回。
部署 admission webhook 服务
在 E2E 测试环境中, Customize Interpreter示例 部署在 host 集群上,由 service 暴露为 webhook 服务器前端。
你也可以在集群外部署你的 webhooks,并记得更新你的 webhook 配置。
即时配置 webhook
你可以通过 ResourceInterpreterWebhookConfiguration 来配置哪些资源和解释器操作
受 webhook 的约束。
下面提供了一个 ResourceInterpreterWebhookConfiguration
的配置示例:
apiVersion: config.karmada.io/v1alpha1
kind: ResourceInterpreterWebhookConfiguration
metadata:
name: examples
webhooks:
- name: workloads.example.com
rules:
- operations: [ "InterpretReplica","ReviseReplica","Retain","AggregateStatus" ]
apiGroups: [ "workload.example.io" ]
apiVersions: [ "v1alpha1" ]
kinds: [ "Workload" ]
clientConfig:
url: https://karmada-interpreter-webhook-example.karmada-system.svc:443/interpreter-workload
caBundle: {{caBundle}}
interpreterContextVersions: [ "v1alpha1" ]
timeoutSeconds: 3
你可以在 ResourceInterpreterWebhookConfiguration 中配置多个 webhook,每个 webhook 至少服务于一个解释器操作
。